Activation of p53-mediated cell cycle checkpoint in response to micronuclei formation.

Authors:
Sablina AA, Ilyinskaya GV, Rubtsova SN, Agapova LS, Chumakov PM, Kopnin BP
Associated Labs:
Sablina Lab (Katholieke Universiteit Leuven)
J Cell Sci. 1998 Apr . 111 ( Pt 7)():977-84.
PMID: 9490641
Inactivation of p53 tumor-suppressor leads to genetic instability and, in particular, to accumulation of cells with abnormal numbers of chromosomes. In order to better define the role of p53 function in maintaining genome integrity we investigated the involvement of p53 in the control of proliferation of micronucleated cells resulting from abnormal chromosome segregation. Using cell lines expressing temperature-sensitive (ts) p53 or containing p53 genetic suppressor element (p53-GSE) we showed that inhibition of p53 function increases the frequency of cells with micronuclei. Immunofluorescence study revealed that in REF52 cell cultures with both spontaneous and colcemid-induced micronuclei the proportion of p53-positive cells is considerably higher among micronucleated variants as compared with their mononuclear counterparts. Analysis of 12(1)ConA cells expressing the beta-galactosidase reporter gene under the control of a p53-responsive promoter showed activation of p53-regulated transcription in the cells with micronuclei. Importantly, the percentage of cells manifesting specific p53 activity in colcemid-treated cultures increased with an augmentation of the number of micronuclei in the cell. Activation of p53 in micronucleated cells was accompanied by a decrease in their ability to enter S-phase as was determined by comparative analysis of 5-bromodeoxyuridine (5-BrdU) incorporation by the cells with micronuclei and their mononuclear counterparts. Inhibition of p53 function in the cells with tetracycline-regulated p53 gene expression, as well as in the cells expressing ts-p53 or p53-GSE, abolished cell cycle arrest in micronucleated cells. These results along with the data showing no increase in the frequency of chromosome breaks in REF52 cells after colcemid treatment suggest the existence of p53-mediated cell cycle checkpoint(s) preventing proliferation of micronucleated cells derived as a result of abnormal chromosome segregation during mitosis.

Want to be recognized as an author of this publication?

Create your LabLife profile and tag yourself! You will also be able to tag other authors after you log into your account.

Create New Account

Login

What is LabLife?

LabLife is a collection of tools to help scientists organize, share and discover.

Learn more