Germline chromatin.

Authors:
Schaner CE, Kelly WG
Associated Labs:
Kelly Lab (Emory University)
WormBook. 2006 . ():1-14.
PMID: 18050477
The DNA in eukaryotes is wrapped around a histone octamer core, together comprising the main subunit of chromatin, the nucleosome. Modifications of the nucleosomal histones in the genome correlate with the ability or inability of chromatin to form higher order structures, that in turn influence gene activity. The genome in primordial germ cells in early C. elegans germ cells carries a unique pattern of histone modifications that correlate with transcriptional repression in these cells, and aspects of this chromatin regulation are conserved in Drosophila. Loss of repression causes sterility in the adults, suggesting that chromatin-based repression is essential for germ line maintenance. The post-embryonic germ line also exhibits unique and dynamic aspects of chromatin regulation, with chromosome-wide regulation particularly evident on the X chromosome. Several properties of X-specific chromatin assembly are also sex-specific. These properties appear to be responding to the meiotic pairing status of the X chromosome, rather than the sex of the germ cells. Finally, gamete-specific chromatin regulation during gametogenesis impacts on X chromatin assembly in the offspring, leading to an apparent sperm-imprinted X inactivation in the early embryo. Other potential roles for germline-specific modes of chromatin assembly in genome regulation and protection are discussed.

Want to be recognized as an author of this publication?

Create your LabLife profile and tag yourself! You will also be able to tag other authors after you log into your account.

Create New Account

Login

What is LabLife?

LabLife is a collection of tools to help scientists organize, share and discover.

Learn more