P53-dependent effects of RAS oncogene on chromosome stability and cell cycle checkpoints.

Agapova LS, Ivanov AV, Sablina AA, Kopnin PB, Sokova OI, Chumakov PM, Kopnin BP
Associated Labs:
Sablina Lab (Katholieke Universiteit Leuven)
Oncogene. 1999 May 20. 18(20):3135-42.
PMID: 10340385
Mutations activating the function of ras proto-oncogenes are often observed in human tumors. Their oncogenic potential is mainly due to permanent stimulation of cellular proliferation and dramatic changes in morphogenic reactions of the cell. To learn more on the role of ras activation in cancerogenesis we studied its effects on chromosome stability and cell cycle checkpoints. Since the ability of ras oncogenes to cause cell transformation may be dependent on activity of the p53 tumor-suppressor the cells with different p53 state were analysed. Ectopic expression of N-ras(asp12) caused in p53-deficient MDAH041 cell line an augmentation in the number of chromosome breaks in mitogenic cells, significant increase in the frequency of metaphases showing chromosome endoreduplication and accumulation of polyploid cells. Similar effects were induced by different exogenous ras genes (N-ras(asp12), H-ras(leu12), N-ras proto-oncogene) in Rat1 and Rat2 cells which have a defect in p53-upstream pathways. In contrast, in REF52 and human LIM1215 cells showing ras-induced p53 up-regulation, ras expression caused only slight increase in the number of chromosome breaks and did not enhance the frequency of endoreduplication and polyploidy. Inactivation in these cells of p53 function by transduction of dominant-negative C-terminal p53 fragment (genetic suppressor element #22, GSE22) or mutant p53s significantly increased the frequency of both spontaneous and ras-induced karyotypic changes. In concordance with these observations we have found that expression of ras oncogene caused in p53-defective cells further mitigation of ethyl-metansulphonate-induced G1 and G2 cell cycle arrest, but did not abrogate G1 and G2 cell cycle checkpoints in cells with normal p53 function. These data indicate that along with stimulation of cell proliferation and morphological transformation ras activation can contribute to cancerogenesis by increasing genetic instability.

Want to be recognized as an author of this publication?

Create your LabLife profile and tag yourself! You will also be able to tag other authors after you log into your account.

Create New Account


What is LabLife?

LabLife is a collection of tools to help scientists organize, share and discover.

Learn more